

Mapping Black Carbon and aerosol absorption in a major European city

<u>G. Veratti¹</u>, I. Stavroulas², A. Bigi¹, G. Grivas², P. Kalkavouras², D. Paraskevopoulou², E. Liakakou², A. Bougiatioti², O. Speyer², C. Chatzidiakos², G. Ghermandi¹, E. Gerasopoulos², and N. Mihalopoulos²

¹ UNIMORE, Department of Engineering "Enzo Ferrari", Modena, 41125 (Italy) ² Institute for Environmental Research and Sustainable Development- NOA, Athens, 15236 (Greece)

Goals of the study:

- Investigate the spatial variability of Black Carbon concentrations in the Greater Area of Athens during two intensive pedestrian mapping campaigns:
 - Summer (7 27 June 2021)
 - Winter (7 27 February 2022) along 4 different circular routes, conducted twice *per* day (morning and evening), representative of as many areas.
- Provide spatially resolved information for pedestrian exposure estimate to Black Carbon concentrations.
- Preliminary attempt to estimate the contribution of non-BC absorbers to the absorption coefficient from MicroAethalometer measurements.

Six MicroAethalometer MA200 Aethlab (USA) have been used for the mapping campaign

Portable instruments which measure the mass concentration of light absorbing carbonaceous particles in a sampled aerosol. They operate at <u>five wavelengths</u> between IR and UV (880 nm, 625 nm, 528 nm, 470 nm, 375 nm).

➡ eBC (equivalent Black Carbon)

Featured by the DualSpot® loading compensation method* and a GPS tracker.

Set-up:

- Sampling timebase =10sec
- Air flow rate = 150 mL/min
- The MA200 were placed inside a backpack and the aerosol entered the instrument through a conductive tubing.

* Drinovec et al. (2015) The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech.

Overview of the four routes

3) Suburban background

Post-processing methods

A GIS analysis of measurement point locations was carried out and an automatic procedure devoted to data assortment along four reference routes was implemented with the R language.

Post-processing methods

Noise $(ng/m^3) = \frac{1}{m} \sum_{i=0}^{n} |BC_{i+1}|$

- ✓ Four different noise reduction techniques were applied to the measured concentrations:*
 - Kolmogorov–Zurbenko low-pass filter (KZ)
 - Centered moving average (CMA)
 - Optimized Noise reduction Averaging (ONA)
 - Local polynomial regression (POL)

Scores related to the urban background area during the summer period

	Raw data	KZ	СМА	ONA	POL
Averge Noise (ng m ⁻³)	1175	142	238	113	608
N. negative values	730	11	39	1	604
N. peak samples	447	415	452	357	419
Avg. peak sample conc (ng m ⁻³)	3592	3542	3829	3529	3972

*Liu, X. et al. (2021) Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg, Atmos. Meas. Tech

Hagler, G.S., et al. (2011). Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data. Aerosol Air Qual. Res

Results from the mapping campaigns: eBC concentrations

Constant Multiple-scattering correction factor: C_{ref} = 1.3

Summer 🙀 Winter

Calculated after Kolmogorov–Zurbenko post-processing

Analysis of the Absorption Ångström Exponent (AAE)

AAE computed between 375 and 880 nm; $MAE_{375nm} = 24.069 \text{ m}^2 \text{ g}^{-1}$; $MAE_{880nm} = 10.12 \text{ m}^2 \text{ g}^{-1}$

Summer 😣 Winter

Preliminary estimation of the contribution of non-BC absorbers to the absorption coef. at 470nm

Assumptions:

- Abs. coefficient @880 nm can be attributed to BC
- AAE-BC estimated close to traffic source from MA200 measurements

* Li et al. (2021): Correcting micro-aethalometer absorption measurements for brown carbon aerosol. Sci. Total Environ.

<u>Conclusions</u>

- BC concentrations showed considerable spatial and temporal variability:
- The port area displayed on average the highest BC concentrations and the highest variability along the route, especially during winter.
- The traffic route presented on average similar BC concentrations between seasons and small variability within the same season.
- The suburban route highlighted on average low BC levels with high contrast in winter between morning/evening driven by biomass burning, as suggested by the preliminary analysis of the contribution of non-BC absorber at 470nm.
- The urban background path that winds around the Acropolis showed the lowest level of BC-Concentrations.

Further steps and details

- ✓ Apportionment between BC and BrC through spectral analysis of absorption coefficient and source apportionment between FF and BB.
- ✓ Assessment of the applied filtering methods by inter-comparison with reference absorption photometer (MAAP and AE33), located at the NOA Actris station (Thissio) in the urban background of Athens.
- ✓ Characterization of the performance of the MA200 through field unit-to-unit intercomparison at the NOA Actris station (Thissio) will be discussed in the following session:

AMT-9: Novel Measurement Techniques III Thursday, September 8, 15:30 – 17:00

Stavroulas I. et al.: Field evaluation of miniature absorption photometers in an Eastern Mediterranean urban environment

Post-processing methods

 A GIS analysis of measurement point locations was carried out and an automatic procedure devoted to data assortment along the four routes was implemented with the R language.

